金属-有机框架材料的概述

2024-05-19 03:28

1. 金属-有机框架材料的概述

金属-有机框架(英文Metal-Organic Frameworks),简称MOFs,是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料。 [Zn4O(BDC)3](DMF)8(C6H5Cl)(MOF-5,H2BDC = 1,4-苯二甲酸,DMF = N,N-二甲基甲酰胺)的合成与表征 具有开创性意义,它是一个典型的MOFs 材料。在MOFs 中,有机配体和金属离子或团簇的排列具有明显的方向性,可以形成不同的框架孔隙结构,从而表现出不同的吸附性能   、光学性质   、电磁学性质  等。MOFs 在现代材料学方面呈现出巨大的发展潜力和诱人的发展前景。

金属-有机框架材料的概述

2. 金属-有机框架材料的介绍

金属-有机框架(Metal-Organic Frameworks),简称MOFs,是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料。

3. 金属有机框架与经典配合物分子的共同点

有机金属框架材料的特点
1.多孔性及大的比表面积
孔隙是指除去客体分子后留下的多孔材料的空间。多孔性是材料应用于催化、气体吸附与分离的重要性质。材料的孔径大小直接受有机官能团的长度影响,有机配体越长,除去客体分子后材料的孔径越大。在实际应用中,选择不同的有机配体可以得到不同孔径大小的材料,气体吸附与分离一般选择孔径相对小、孔隙率高的MOFs材料;催化应用则选择孔径大的MOFs材料。此外,对于蛋白质或肽段的吸附与分离,可根据材料的分子筛效应和性质,对其按分子的大小或相互作用力的不同进行分离。
比表面积是评价多孔材料催化性能、吸附能力的另一重要指标,因此人们不断改变MOFs材料金属中心和连接臂的主要目的之一就是使材料具有更大的比表面积。例如,Yaghi小组 合成的较早的MOFs材料MOF-5,其比表面积约为 3 000 m/g; 2004年,他们报道的MOF-177 ,比表面积可达到 4 500 m/g,是当时报道的MOFs材料中比表面积最大的一种;2010年,他们合成出MOF-210 ,其BET比表面积达 6 240 m/g, Langmuir比表面积更高达 10 400 m/g,这个值已经接近固体材料比表面积的极值。
2.结构与功能多样性
MOFs材料可变的金属中心及有机配体导致了其结构与功能的多样性。MOFs材料金属中心的选择几乎覆盖了所有金属,包括主族元素、过渡元素、镧系金属等,其中应用较多的为Zn、Cu、Fe等。不同金属的价态、配位能力不同也导致了不同材料的出现。而对于有机配体的选择,则从最早易坍塌的含氮杂环类配体过渡到了稳定性好的羧酸类配体;在解决了MOFs材料除去客体分子后坍塌的问题后,由于种类繁多的羧酸类配体可供选择及修饰,人们合成了带有一种或多种目的基团的混合MOFs材料 ,不同官能团的组合大大拓宽了MOFs材料的应用范围。
3.不饱和的金属位点
由于二甲基甲酰胺(DMF)、水、乙醇等小溶剂分子的存在,未饱和的金属中心与其进行结合来满足配位需求,经过加热或真空处理后可以去除这些溶剂分子,从而使不饱和金属位点暴露。这些暴露的不饱和金属位点可以通过与NH3、H2S、CO2等气体配位而达到气体吸附和分离的作用,也可以与带有氨基或羧基的物质进行配位,从而使MOFs材料作为药物载体或肽段分离的有效工具;此外,含有不饱和金属位点的MOFs材料亦可作为催化反应的催化【摘要】
金属有机框架与经典配合物分子的共同点【提问】
有机金属框架材料的特点
1.多孔性及大的比表面积
孔隙是指除去客体分子后留下的多孔材料的空间。多孔性是材料应用于催化、气体吸附与分离的重要性质。材料的孔径大小直接受有机官能团的长度影响,有机配体越长,除去客体分子后材料的孔径越大。在实际应用中,选择不同的有机配体可以得到不同孔径大小的材料,气体吸附与分离一般选择孔径相对小、孔隙率高的MOFs材料;催化应用则选择孔径大的MOFs材料。此外,对于蛋白质或肽段的吸附与分离,可根据材料的分子筛效应和性质,对其按分子的大小或相互作用力的不同进行分离。
比表面积是评价多孔材料催化性能、吸附能力的另一重要指标,因此人们不断改变MOFs材料金属中心和连接臂的主要目的之一就是使材料具有更大的比表面积。例如,Yaghi小组 合成的较早的MOFs材料MOF-5,其比表面积约为 3 000 m/g; 2004年,他们报道的MOF-177 ,比表面积可达到 4 500 m/g,是当时报道的MOFs材料中比表面积最大的一种;2010年,他们合成出MOF-210 ,其BET比表面积达 6 240 m/g, Langmuir比表面积更高达 10 400 m/g,这个值已经接近固体材料比表面积的极值。
2.结构与功能多样性
MOFs材料可变的金属中心及有机配体导致了其结构与功能的多样性。MOFs材料金属中心的选择几乎覆盖了所有金属,包括主族元素、过渡元素、镧系金属等,其中应用较多的为Zn、Cu、Fe等。不同金属的价态、配位能力不同也导致了不同材料的出现。而对于有机配体的选择,则从最早易坍塌的含氮杂环类配体过渡到了稳定性好的羧酸类配体;在解决了MOFs材料除去客体分子后坍塌的问题后,由于种类繁多的羧酸类配体可供选择及修饰,人们合成了带有一种或多种目的基团的混合MOFs材料 ,不同官能团的组合大大拓宽了MOFs材料的应用范围。
3.不饱和的金属位点
由于二甲基甲酰胺(DMF)、水、乙醇等小溶剂分子的存在,未饱和的金属中心与其进行结合来满足配位需求,经过加热或真空处理后可以去除这些溶剂分子,从而使不饱和金属位点暴露。这些暴露的不饱和金属位点可以通过与NH3、H2S、CO2等气体配位而达到气体吸附和分离的作用,也可以与带有氨基或羧基的物质进行配位,从而使MOFs材料作为药物载体或肽段分离的有效工具;此外,含有不饱和金属位点的MOFs材料亦可作为催化反应的催化【回答】
经典配合物特点:中心离子或原子具有正常的氧化态;形成配位键的配体的孤电子对基本上是定域于金属原子和配位原子之间。【回答】

金属有机框架与经典配合物分子的共同点